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Abstract

In this paper, we study the coefficients of constitutive equations of a binary mixture of elastic solids and give an ana-
lytical approach to determine them. Assuming a material of two-phase elastic composite with randomly distributed
elastic spheres is equivalent to a mixture of two elastic solids, we find the values of unknown coefficients by making
use of Boussinesq problem. Furthermore, a mean displacement vector definition is also given.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The increase in the expectations about the physical and chemical properties of the materials, depending
on industrial progress, has caused researches on the multi-component materials to gain increasing impor-
tance recently in many technological applications where a single material fails to fulfill our expectations.
Much work has been undertaken to find complete systems of equations governing the thermomechanical
response of these materials. An acceptable approach based on the ideas and methods of modern continuum
mechanics is the theory of mixtures.

Truesdell (1957) was the first to formulate the thermomechanical balance equations for a mixture of gen-
eral materials. After his pioneering work, a good amount of literature has been generated on the formula-
tion of continuum thermomechanical theories of mixtures. The reader is referred to the works of Bowen
0020-7863/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.06.055

* Corresponding author. Tel.: +90 21229313002504; fax: +90 2122450795.
E-mail address: dokuzme@itu.edu.tr

mailto:dokuzme@itu.edu.tr


806 M.S. Dokuz / International Journal of Solids and Structures 42 (2005) 805–817
(1976), Atkin and Craine (1976a,b), Bedford and Drumheller (1983) and Rajagopal and Wineman (1990)
regarding the historical development of the theory and detailed analysis of various results.

Using a general thermodynamical theory of interacting continua in the form developed in Green and
Naghdi (1965), basic constitutive equations for a mixture of two nonlinear elastic solids have been given
by Green and Steel (1966), and later from these general equations, the linearised theory for an isotropic
mixture of two elastic solids has been derived by Steel (1967a). In his subsequent study, Steel (1968) stated
that the physical motivation for considering such a theory is an attempt to describe the behavior of certain
binary alloys or certain kinds of composite material in which each point of the mixture can be considered as
being occupied by a particle of each solid when considered on a macroscopic scale.

As is known, in many situations, it might not be possible to experimentally measure the physical quan-
tities associated with each constituent of the mixture. Therefore, we need to seek various methods to deter-
mine them. In this study, we shall present a mechanical method to achieve this goal. For this purpose, it is
assumed that an isotropic mixture of two linear elastic solids, each having the same constant temperature, is
equivalent to a material of two-phase elastic composite with randomly distributed elastic spheres. The cor-
respondence between the actual composite and its equivalent mixture is established on the requirement of
equality of the total stresses for the two media.

In the next section, the balance laws and relevant constitutive equations are briefly presented, and then
the equations governing the motion of the binary mixture are stated for the case of equilibrium. In the sub-
sequent sections, the displacement vectors and the stress tensors are written in terms of the Galerkin vec-
tors, some relations between the mixture and a linear elastic solid are expressed and Boussinesq problem
which is well known problem in classical theory of elasticity is solved for a mixture of two elastic solids.
Finally, a comparison between the two solutions is made and unknown constitutive constants are obtained.
2. Basic theory

We consider that the mixture of two elastic solids is initially isotropic and the solids have constant den-
sities �q1 and �q2, initially. At an arbitrary time t it is assumed that each point of the mixture is occupied
simultaneously by the constituents C1 and C2, which are in motion relative to a fixed system of rectangular
Cartesian axes. The positions of the typical particles of the solids at time t are denoted by
xiðtÞ ¼ xiðX 1;X 2;X 3; tÞ; yiðtÞ ¼ yiðY 1; Y 2; Y 3; tÞ; ð1Þ

where Xi and Yi are the reference positions of the particles. These motions are assumed to be one-to-one
continuous, and invertible. Since a given position is occupied at time t by a particle of each solid, we
may write xi (t) = yi (t). All subsequent displacements are assumed to be small, so that we retain only linear
terms in the partial stresses and the diffusive force, and we let
xi ¼ X i þ uð1Þi ; yi ¼ Y i þ uð2Þi : ð2Þ

Since infinitesimal changes of positions are considered, it may be assumed for convenience that the particles
occupy the same position initially, i.e. Xi = Yi.

In order to simplify the problem, thermal effects and exchanges of mass between the constituents are ex-
cluded so that the balances of mass for C1 and C2 reduce to
q1 ¼ �q1ð1� emmÞ; q2 ¼ �q2ð1� gmmÞ; ð3Þ

where eik and gik are the strain tensors of elastic solids. In the linear theory they are given by
eik ¼
1

2

ouð1Þi

oX k
þ ouð1Þk

oX i

 !
; gik ¼

1

2

ouð2Þi

oY k
þ ouð2Þk

oY i

 !
: ð4Þ
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The constitutive equations for the partial stresses and the diffusive force in equilibrium, referred to fixed
rectangular Cartesian axes are (Steel, 1967a)
rik ¼ �a2dik þ k1emmdik þ 2l1eik þ k3gmmdik þ 2l3gik � k5ðhik � hkiÞ; ð5Þ

pik ¼ a2dik þ k2gmmdik þ 2l2gik þ k4emmdik þ 2l3eik þ k5ðhik � hkiÞ; ð6Þ

pk ¼
�q1a2

�q
ogmm
oXk

þ �q2a2

�q
oemm
oX k

; ð7Þ
where all of the coefficients are constants, and
hik ¼
ouð1Þk

oX i
þ ouð2Þi

oY k
; �q ¼ �q1 þ �q2; a2 ¼ k3 � k4: ð8Þ
The coefficient a2 represents the partial stress in the initial position.
We now assume that instead of the mixture being isotropic as a whole initially, each solid is isotropic i.e.

k5 = 0 (Steel, 1967b). If it is also considered that the only interaction terms in the relations (5) and (6)
are those involving k3, k4 and l3; then k1, l1 and k2, l2 can be considered as the Lamé elastic constants
for solids C1 and C2 respectively when separated (Steel, 1968). The equations of equilibrium are of the
forms
rik;i � pk þ F k ¼ 0; pik;i þ pk þ Gk ¼ 0: ð9Þ

Here Fk and Gk are the body forces per unit volume acting on the constituents. A comma denotes differ-
entiation with respect to the initial position of each solid. In this paper, we shall restrict our attemption
to the absence of body forces. Under these conditions, introducing (5) and (6) into Eq. (9), we have
k�
1emm;k þ k�

3gmm;k þ 2l1eik;i þ 2l3gik;i ¼ 0; ð10Þ

k�
2gmm;k þ k�

4emm;k þ 2l2gik;i þ 2l3eik;i ¼ 0; ð11Þ
where
k�
1 ¼ k1 �

�q2a2

�q
; k�

2 ¼ k2 þ
�q1a2

�q
; k�

3 ¼ k3 �
�q1a2

�q
; k�

4 ¼ k4 þ
�q2a2

�q
: ð12Þ
Also, using the relations (8)2 and (8)3 we obtain that k�
3 ¼ k�

4. Substitution of expressions (4) for eik and gik
into (10) and (11) yield the following equations of equilibrium in vectorial forms:
l1r2uð1Þ þ l3r2uð2Þ þ ðk�
1 þ l1Þrðr � uð1ÞÞ þ ðk�

3 þ l3Þrðr � uð2ÞÞ ¼ 0; ð13Þ

l3r2uð1Þ þ l2r2uð2Þ þ ðk�
4 þ l3Þrðr � uð1ÞÞ þ ðk�

2 þ l2Þrðr � uð2ÞÞ ¼ 0: ð14Þ
3. The Galerkin vector representation for a binary mixture of elastic solids

Recently, Gürgöze and Dokuz (1999) using the Helmholtz theorem showed that Eqs. (13) and (14) can
be reduced to the system of differential equations
ðl1 þ l3Þr2uð1Þ þ ðk1 þ k4 þ l1 þ l3Þrðr � uð1ÞÞ ¼ 0; ð15Þ

ðl2 þ l3Þr2uð2Þ þ ðk2 þ k3 þ l2 þ l3Þrðr � uð2ÞÞ ¼ 0 ð16Þ

under the conditions
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l1 þ l3 6¼ 0; l2 þ l3 6¼ 0; k1 þ k4 þ l1 þ l3 6¼ 0; k2 þ k3 þ l2 þ l3 6¼ 0;

ðk�
1 þ 2l1Þðk�

2 þ 2l2Þ 6¼ ðk�
3 þ 2l3Þ

2
; l1l2 6¼ l2

3: ð17Þ
Since the differential equations (15) and (16) are formally similar to the Navier equations in the classical
theory of elasticity, the similar mathematical methods which were essentially developed for a single contin-
uum can be used to solve them. Therefore, in a previous work, Dokuz and Gürgöze (2002) introduced the
Galerkin vector definitions F1 and F2 to solve the Boussinesq problem as follows:
uð1Þ ¼ Ar2F1 �rðr � F1Þ; uð2Þ ¼ Br2F2 �rðr � F2Þ; ð18Þ

where A and B are given by
A ¼ l1 þ l3

k1 þ k4 þ l1 þ l3

þ 1; B ¼ l2 þ l3

k2 þ k3 þ l2 þ l3

þ 1: ð19Þ
In the case of a state of stress possessing axial symmetry the Galerkin vector is replaced by the Love�s strain
function. This function is defined by a biharmonic equation in the case of zero body forces. Thus, an axi-
symmetric problem can be solved if we succeed in finding a proper biharmonic function satisfying the
boundary conditions. If Z1 and Z2 are two Love�s strain functions satisfying equations
r2r2Z1 ¼ 0; r2r2Z2 ¼ 0 ð20Þ

then, the Galerkin vectors become
F1 ¼ 0 0 Z1ðx; y; zÞ½ �; F2 ¼ 0 0 Z2ðx; y; zÞ½ �: ð21Þ
At the conclusion of this section, we write the stress tensors and the diffusive force vector in terms of the
Galerkin vectors as follows:
r ¼ �a2Iþ k1ðA� 1Þr2ðr � F1ÞIþ l1 A½rðr2F1Þ þ ðr2F1Þr� � 2rrðr � F1Þ
� �

þ k3ðB� 1Þr2ðr � F2ÞIþ l3 B½rðr2F2Þ þ ðr2F2Þr� � 2rrðr � F2Þ
� �

; ð22Þ

p ¼ a2Iþ k4ðA� 1Þr2ðr � F1ÞIþ l3 A½rðr2F1Þ þ ðr2F1Þr� � 2rrðr � F1Þ
� �

þ k2ðB� 1Þr2ðr � F2ÞIþ l2 B½rðr2F2Þ þ ðr2F2Þr� � 2rrðr � F2Þ
� �

; ð23Þ

p ¼ a2ðA� 1Þ �q2

�q
r½r2ðr � F1Þ� þ a2ðB� 1Þ �q1

�q
r½r2ðr � F2Þ�: ð24Þ
4. Some deductions

A mixture can be considered as a single continuum with overall Lamé constants k and l or overall
Young�s modulus E and Poisson�s ratio m. Therefore, we try to make an attempt in this section to obtain
some relations between a mixture of two elastic solids and a single elastic continuum. We assume here that
the elastic moduli of the solids when mixed are the same as when separate, the only difference when mixed
being the addition of interaction terms.

First, we write the total mechanical stress tensor tik for the mixture defined by
tik ¼ rik þ pik: ð25Þ

By substituting Eqs. (5) and (6) into (25), we obtain
tik ¼ ½ðk1 þ k4Þemm þ ðk2 þ k3Þgmm�dik þ 2½ðl1 þ l3Þeik þ ðl2 þ l3Þgik�: ð26Þ
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It is readily shown that the above equation will have the same form with a single elastic continuum if we
define
leik ¼ ðl1 þ l3Þeik þ ðl2 þ l3Þgik; ð27Þ

kemm ¼ ðk1 þ k4Þemm þ ðk2 þ k3Þgmm: ð28Þ
Thus we have a definition between the partial strains and the mean strain tensor eik.
Summing Eq. (9), for Fk = 0 and Gk = 0, we have
rik;i þ pik;i ¼ 0 ð29Þ
which is the equation of equilibrium of the mixture. In terms of the displacement vectors, using the defini-
tions (12), it has the form
ðl1 þ l3Þr2uð1Þ þ ðl2 þ l3Þr2uð2Þ þ r½ðk1 þ k4 þ l1 þ l3Þr � uð1Þ þ ðk2 þ k3 þ l2 þ l3Þr � uð2Þ� ¼ 0:

ð30Þ
Now, let us define the relations
lr2w ¼ ðl1 þ l3Þr2uð1Þ þ ðl2 þ l3Þr2uð2Þ; ð31Þ

ðk þ lÞr � w ¼ ðk1 þ k4 þ l1 þ l3Þr � uð1Þ þ ðk2 þ k3 þ l2 þ l3Þr � uð2Þ; ð32Þ

where w can be called as the mean displacement vector of the mixture. Then (30) will be identical to the
Navier�s equation of classical theory of elasticity. Integrating Eq. (31), w is obtained as
lw ¼ ðl1 þ l3Þuð1Þ þ ðl2 þ l3Þuð2Þ: ð33Þ

Here, it is assumed that u(1) = 0 and u(2) = 0 when w = 0.

It is of course that the strain tensors (27) and (28) can not be independent of the mean displacement vec-
tor which is defined in terms of partial displacement vectors as given by Eqs. (32) and (33). The relations
between these equations can be seen using the strain tensor of the equivalent single elastic solid. As it is
stated in Section 2, in the general theory of mixture, the same final position is occupied by a particle of each
solid, that xi = yi. Since we are considering infinitesimal changes of position, we may write Xi = Yi. There-
fore, the strain tensor of the equivalent single elastic solid is
eik ¼
1

2

owi

oXk
þ owk

oX i

� �
ð34Þ
and, hence, emm = $ Æ w. With the help of (4) and (33) we obtain Eq. (27), and summing (27) and (28) for
i = k = m we get Eq. (32).

Finally, in addition to the balance of mass of each constituent, adding Eq. (3) we also have the balance of
mass for the mixture as a whole thus (Steel, 1968)
q ¼ �qð1� emmÞ; ð35Þ

where q = q1 + q2 and
�qemm ¼ �q1emm þ �q2gmm: ð36Þ

In order to test the results, we need to know k3, k4 and l3. Generally, we have to determine them from

experiments. Since, such experimental data is not available at the present moment, using the solution of
Boussinesq problem, we try to make an analytical approach in determination of them in the following
sections.
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5. Boussinesq problem

Let us consider a semi-infinite mixture body under the action of a concentrated normal load Q acting on
the boundary plane along the z axis (Fig. 1).

Evidently, this is an axisymmetric problem with the line of action of Q as the axis of symmetry. The sym-
metry of the problem suggests the use of cylindrical coordinates and Love�s strain functions Z1 = Z1 (r,z)
and Z2 = Z2(r,z).

Previously, Dokuz and Gürgöze (2002) examined this problem for a mixture of two elastic solids as a
whole. They used two Love�s strain functions and found the unknown quantities with the help of two
boundary conditions. As a distinct departure from the preceding work, in this study, we shall employ four
Love�s strain functions and conditions.

The boundary conditions of the problem for r > 0 and z = 0 are
tzz ¼ ðrzz þ a2Þ þ ðpzz � a2Þ ¼ 0; trz ¼ rrz þ prz ¼ 0: ð37Þ

Let Q1 and Q2 be the surface tractions associated with the solids C1 and C2, respectively, i.e.,
ðr þ a2IÞTn ¼ Q1; ðp � a2IÞTn ¼ Q2; tTn ¼ Q; ð38Þ

where n is the unit outward normal vector and Q = Q1 + Q2. In this paper, following Tao and Rajagopal
(1995), we assume that the boundary surface fractions (and volume fractions) occupied by the solid constit-
uents C1 and C2 are
a ¼ q1

�q1

¼ dV 1

dV
¼ dS1

dS
; 1� a ¼ q2

�q2

¼ dV 2

dV
¼ dS2

dS
ð39Þ
and
Q1 ¼ atTn; Q2 ¼ ð1� aÞtTn ð40Þ

or
Q1 ¼ aQ; Q2 ¼ ð1� aÞQ: ð41Þ

Here dV1 and dV2 denote the volumes occupied by C1 and C2 in an infinitesimal cube of the mixture dV at
x. Also a is a positive constant subject to the relation 0 < a < 1. The assumptions (39) are consistent with
Mills� volume additivity constraint (Mills, 1967), that is, each constituent in its reference state is assumed to
be incompressible and
r 

z  

Q  

O  

Fig. 1. Boussinesq problem.
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q1

�q1

þ q2

�q2

¼ 1: ð42Þ
Thus, for r > 0 and z = 0, from Eqs. (37), (38) and (40) we have
rzz þ a2 ¼ 0; pzz � a2 ¼ 0; rrz ¼ 0; prz ¼ 0: ð43Þ

Now, let us consider a horizontal plane section at a distance z = h from the boundary plane. The normal

stresses on this section must be in equilibrium with the surface forces and, consequently, in equilibrium with
the loads Q1 and Q2. Therefore, we have the following equilibrium equations in place of the first two
boundary conditions in (43) (see Dokuz and Gürgöze, 2002):
Q1 ¼ �
Z 1

0

2prðrzz þ a2Þjz¼hdr; Q2 ¼ �
Z 1

0

2prðpzz � a2Þjz¼hdr: ð44Þ
According to Eq. (20), Z1 and Z2 must be biharmonic functions whose third partial derivatives should
define stresses that vanish at infinity. Therefore, we shall seek solutions compatible with Eq. (20), of the
following forms:
�Z1 ¼ N 1R; �Z2 ¼ M1R ð45Þ

and
��Z1 ¼ N 2½R� z lnðRþ zÞ�; ��Z2 ¼ M2½R� z lnðRþ zÞ�; ð46Þ

where N1, N2, M1 and M2 are constants to be obtained later, and R = (r2 + z2)1/2. Using the Love�s strain
functions �Z1; �Z2 and ��Z1,

��Z2, making some calculations, from (22) and (23) we find the components of stress
tensors �rik, �pik and ��rik, ��pik, respectively. After superposing these equations, i.e.
rik ¼ �rik þ ��rik; pik ¼ �pik þ ��pik ð47Þ
we obtain the components of stress tensors and diffusive force vector as
rrr ¼ �a2 þ 2 ½ð1� AÞk1 þ l1�N 1 þ ½ð1� BÞk3 þ l3�M1 þ l1N 2 þ l3M2f g z
r3

� 2ðl1N 1 þ l3M1Þ
3r2z

R5
� 2ðl1N 2 þ l3M2Þ

1

RðRþ zÞ ; ð48Þ

prr ¼ a2 þ 2 ½ð1� AÞk4 þ l3�N 1 þ ½ð1� BÞk2 þ l2�M1 þ l3N 2 þ l2M2f g z
r3

� 2ðl3N 1 þ l2M1Þ
3r2z

R5
� 2ðl3N 2 þ l2M2Þ

1

RðRþ zÞ ; ð49Þ

rrz ¼ 2½ð1� AÞl1N 1 þ ð1� BÞl3M1 � l1N 2 � l3M2�
r

R3
� 2ðl1N 1 þ l3M1Þ

3r2z

R5
; ð50Þ

prz ¼ 2½ð1� AÞl3N 1 þ ð1� BÞl2M1 � l3N 2 � l2M2�
r

R3
� 2ðl3N 1 þ l2M1Þ

3r2z

R5
; ð51Þ

rhh ¼ �a2 þ 2 ½ð1� AÞk1 þ l1�N 1 þ ½ð1� BÞk3 þ l3�M1f g z

R3
þ 2ðl1N 2 þ l3M2Þ

1

RðRþ zÞ ; ð52Þ

phh ¼ a2 þ 2 ½ð1� AÞk4 þ l3�N 1 þ ½ð1� BÞk2 þ l2�M1f g z

R3
þ 2ðl3N 2 þ l2M2Þ

1

RðRþ zÞ ; ð53Þ
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rzz ¼ �a2 þ 2 ½ð1� AÞk1 þ ð3� 2AÞl1�N 1 þ ½ð1� BÞk3 þ ð3� 2BÞl3�M1 � ðl1N 2 þ l3M2Þf g z

R3

� 2ðl1N 1 þ l3M1Þ
3z3

R5
; ð54Þ

pzz ¼ a2 þ 2 ½ð1� AÞk4 þ ð3� 2AÞl3�N 1 þ ½ð1� BÞk2 þ ð3� 2BÞl2�M1 � ðl3N 2 þ l2M2Þf g z

R3

� 2ðl3N 1 þ l2M1Þ
3z3

R5
; ð55Þ

pr ¼ 6g
rz

R5
; ph ¼ 0; pz ¼ �2g

r2 � 2z2

R5
; ð56Þ
where
g ¼ a2 ðA� 1ÞN 1

�q2

�q
þ ðB� 1ÞM1

�q1

�q

� 	
: ð57Þ
The above results can now be substituted Eqs. (43)3, (43)4 and (44) to satisfy the boundary conditions re-
quired for Boussinesq�s solution. This gives
½ðA� 1ÞN 1 þ N 2�l1 þ ½ðB� 1ÞM1 þM2�l3 ¼ 0; ð58Þ

½ðA� 1ÞN 1 þ N 2�l3 þ ½ðB� 1ÞM1 þM2�l2 ¼ 0; ð59Þ

Q1 ¼ 4p½ðA� 1Þðk1 þ 2l1ÞN 1 þ ðB� 1Þðk3 þ 2l3ÞM1 þ l1N 2 þ l3M2�; ð60Þ

Q2 ¼ 4p½ðA� 1Þðk4 þ 2l3ÞN 1 þ ðB� 1Þðk2 þ 2l2ÞM1 þ l3N 2 þ l2M2�: ð61Þ
Remembering the inequality l1l2 6¼ l2
3 in (17), from (58) and (59) one gets
N 2 ¼ ð1� AÞN 1; M2 ¼ ð1� BÞM1 ð62Þ
and hence, N1 and M1 can be given by the solution of Eqs. (60) and (61) as
N 1 ¼
Q1ðk2 þ l2Þ � Q2ðk3 þ l3Þ

ðA� 1ÞD ; M1 ¼
Q2ðk1 þ l1Þ � Q1ðk4 þ l3Þ

ðB� 1ÞD ; ð63Þ
where D = 4p[(k1 + l1)(k2 + l2)�(k3 + l3)(k4 + l3)] and it is assumed that
ðk1 þ l1Þðk2 þ l2Þ � ðk3 þ l3Þðk4 þ l3Þ 6¼ 0: ð64Þ
The displacement vectors of the mixture constituents can be obtained in a manner similar to that used
for the stress components (48)–(55). Employing Eqs. (18), (21), (45) and (46), we find the following relations
for the displacement components:
uð1Þr ¼ r
R

N 1z

R2
þ N 2

Rþ z

� �
; uð1Þz ¼ 1

R
AN 1 þ

N 1z2

R2

� �
; ð65Þ

uð2Þr ¼ r M1z
2
þ M2

� �
; uð2Þz ¼ 1

BM1 þ
M1z2

2

� �
: ð66Þ
R R Rþ z R R
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6. The determination of k3, k4 and l3

As indicated before, a mixture can be considered to be a single continuum with overall elastic constants k
and l or E and m. In that case, we need to know the solution of Boussinesq problem for single continua. The
solution for a linear elastic solid is given by the following equations (Fung, 1968):
wr ¼
ð1þ mÞQ
2pER

rz

R2
� ð1� 2mÞr

Rþ z

� 	
; wz ¼

ð1þ mÞQ
2pER

2ð1� mÞ þ z2

R2

� 	
; ð67Þ

trr ¼
Q

2pR2

ð1� 2mÞR
Rþ z

� 3r2z

R3

� 	
; thh ¼

ð1� 2mÞQ
2pR2

z
R
� R
Rþ z

� 	
; ð68Þ

tzz ¼ � 3Qz3

2pR5
; trz ¼ � 3Qrz2

2pR5
: ð69Þ
Since we consider the mixture as an elastic solid, the components of total stress tensor rik + pik and mean
displacement vector wk must be equal to above relevant equations. By comparing Eqs. (48)–(55), (68) and
(69) for rik + pik, and (65)–(67) using (33), we find two linear independent equations
ðA� 1Þðl1 þ l3ÞN 1 þ ðB� 1Þðl2 þ l3ÞM1 ¼
Qð1� 2mÞ

4p
; ð70Þ

ðA� 1Þðk1 þ k4ÞN 1 þ ðB� 1Þðk2 þ k3ÞM1 ¼
Qm
2p

ð71Þ
for three unknowns k3, k4 and l3. An additional equation can be obtained, by comparison between (32) and
(36), as follows:
k1 þ k2 þ k3 þ k4 þ l1 þ l2 þ 2l3 ¼ k þ l; ð72Þ
where Eq. (8)2 is used. Also, with the help of (8)2, we define a new quantity b (0 < b < 1) to which we shall
need later as
b ¼ �q1

�q
¼ k1 þ k4 þ l1 þ l3

k þ l
; 1� b ¼ �q2

�q
¼ k2 þ k3 þ l2 þ l3

k þ l
: ð73Þ
As an example the experimental data for the materials of two-phase elastic composites with randomly
distributed elastic spheres, recorded by Smith (1976), are used here. The material properties involved in that
experiment are:
E� ¼ 76 GPa; m� ¼ 0:23; E0 ¼ 3 GPa; m0 ¼ 0:4: ð74Þ

Here, E*, m* and E 0, m 0 are the material constants of the spherical inhomogenities and the matrix, respec-
tively. The relationships between k, l and E, m are given by
k ¼ Em
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ : ð75Þ
Hence, we assume for the spherical inhomogenities
k1 ¼ 26:32 GPa; l1 ¼ 30:89 GPa ð76Þ

and for the matrix
k2 ¼ 4:29 GPa; l2 ¼ 1:07 GPa: ð77Þ



Table 1
The experimental data of composite

a E (GPa) l (GPa)

0.1 3.75 1.33928571
0.225 5.1 1.82142857
0.3 6 2.14285714
0.398 7.9 2.86071429
0.495 12.1 4.41428571
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Some experimental data by Smith (1976) are listed in Table 1, in which a is the volume fraction of the spher-
ical inhomogenities, E is the overall Young�s modulus and l is the overall shear modulus.

By using the data listed in (76), (77) and Table 1, the coefficients k3, k4 and l3 can be determined from
Eqs. (70)–(72). But (70) and (71) are nonlinear algebraic equations, that is, we have a number of solutions
for k3, k4 and l3. Therefore, bearing in mind that 0 < b < 1, we must test the results with the conditions
given by Borrelli and Patria (1983), and with the inequalities (17) and (64). For an isotropic mixture Borrelli
and Patria (1983) recorded that (k5 = 0)
Table
Some

a

0.0999
0.2250
0.2999
0.3980
0.4950
l1 P 0; l2 P 0; k1 þ 2l1 � ð1� bÞa2 P 0; k2 þ 2l2ba2 P 0; l2
3 6 l1l2;

ðk3 þ 2l3 � ba2Þ2 6 ½k1 þ 2l1 � ð1� bÞa2�½k2 þ 2l2 þ ba2�: ð78Þ
In addition, we assume that for very small variations of a the elastic constants of composite in Table 1
do not change. For instance, E and l are the same for a = 0.22499999, a = 0.225 and a = 0.22500001.
Under these conditions some calculated results and plots for k3, k4 and l3 are given in Table 2 and
Figs. 2–4.

Taking, for example, a = 0.299999997(�0.3) and the relevant values of coefficients in Tables 1 and 2
(E = 6, l = 2.14285714, m = 0.4, k = 8.57142867, k3 = 0.09026783, k4 = �48.54958352, l3 = �1.6981993,
b = 0.649806937) the displacements vectors, stress tensors and diffusive force vector are obtained for the
point r = 0.02 and z = 0.03 as
uð1Þ ¼ �0:00514759Q 0 0:0374949Q½ �; uð2Þ ¼ �1:648Q 0 �4:90598Q½ �; ð79Þ

r þ a2I ¼ f�13:176Q 0 �361:73Q g f 0 229:267Q 0 g f�361:73Q 0 �311:905Q g½ �;
ð80Þ

p � a2I ¼ f�67:4885Q 0 220:686Q g f0 �222:259Q 0 g f220:686Q 0 100:339Q g½ �; ð81Þ

p ¼ 37236:1Q 0 28961:4Q½ �; ð82Þ
where a2 = 48.6399.
2
calculated results for k3, k4 and l3

b k3 (GPa) k4 (GPa) l3 (GPa)

99991 0.649916722 �0.821656176 �50.66384294 �2.194036158
00007 0.649869671 �0.300049793 �49.42028078 �1.871263283
99997 0.649806937 0.090267830 �48.54958352 �1.698199300
00005 0.649914470 0.348816726 �47.90412740 �1.508831199
00008 0.650533125 1.364605879 �45.35216080 �0.766133255
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On the other hand, for a single elastic solid, from (67)–(69) we find
w ¼ 0:413001Q 0 1:94902Q½ �; ð83Þ

t ¼ f�80:6645Q 0 �141:044Q g f0 7:00805Q 0 g f�141:044Q 0 �211:566Q g½ �: ð84Þ
By employing Eq. (33), the same result in Eq. (83) can be obtained. Summation of (80) and (81) give the
total stress tensor t in Eq. (84). Furthermore, Eqs. (27), (28) and (32) are also confirmed by using these
values.
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7. Concluding remarks

In order to compare theoretical solutions with experimental results, it is necessary to know all response
functions in the constitutive equations of the mixture. However, the determination of these functions for a
mixture is much more difficult than that for a single continuum, owing to a large number of response func-
tions appearing in the constitutive equations. The presented method is an alternative attempt to obtain
some information about the response functions of the mixture. In this work, we have followed an analytical
way to determine them.

In this study, a linear elastic isotropic mixture of two elastic solids has been taken into account. The gov-
erning equations are formulated in terms of the displacement vectors. These equations have been solved for
Boussinesq problem by using the Galerkin vectors. Then, the results have been compared with the existing
analytical solution of a single elastic solid and it has been seen that, there are three algebraic equations to
determine three unknown constants. Additionally, in this paper, a mean displacement vector definition has
also been given. When this definition is compared with the known solution of classical theory of elasticity, a
certain agreement is shown between both of them.
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